Flow Injection Amperometric Determination of Phenol and Chlorophenols at Single Wall Carbon Nanotube Modified Glassy Carbon Electrode

نویسندگان

  • Negussie Negash
  • Hailemichael Alemu
  • Merid Tessema
چکیده

Single wall carbon nanotube modified glassy carbon electrode (SWCNT/GCE) was used for flow-injection analysis (FIA) for phenolic compounds (phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorphenol (TCP) and pentachlorophenol (PCP)). Experimental variables such as the detection potential, flow rate and pH of the carrier solution, 0.1 M sodium acetate, were optimized. Under these conditions, the designed electrode showed a very good performance for the amperometric measurements, with no need to apply a cleaning or pre-treatment procedure. The operational stability was tested with 20 repetitive injections of each analyte and was found to be good. The analytical performance of the SWCNT/GCE electrode under flow through conditions was tested and was found to be impressive. When it is compared with other enzymatic and non-enzymatic sensors, it shows wider dynamic range for the detection of phenolic compounds with low limits of detection. These results suggest that the method is quite useful for monitoring and analyzing phenols and chlorophenols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode

Screen printed carbon electrode (SPCE) has been modified with single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) composites for the determination of phenol and chlorophenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol). The effect of the modifiers on the electrode characteristics was evaluated and the responses were optimized for the voltammetr...

متن کامل

Electrochemical Sensor for Determination of Fenitrothion at Multi-wall Carbon Nanotubes Modified Glassy Carbon Electrode

A sensor, based on multi-wall carbon nanotubes modified glassy carbon electrode (MWCNT/GCE), was developed for determination of fenitrothion. Determining the surface area of MWCNT/GCE showed that this surface is three times more active than that of a glassy carbon electrode. The experimental parameters, such as the amount of MWCNTs, pH of the fenitrothion solution, preconcentration potential an...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...

متن کامل

Electrocatalysis at a Thin Multi-Wall Carbon Nanotube Film Modified Glassy Carbon Electrode

A sensitive and selective amperometric procedure, based on a glassy carbon electrode (GCE) modified with a thin multi-wall carbon nanotube (MWNT) film, for the determination of ascorbic acid (AA) was developed. The modified electrode showed excellent electrocatalytic activity towards the oxidation of AA. The oxidation potential of AA shifted negatively by as much as 460 mV to –18 mV (vs. SCE) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014